Accuracy of radiometric dating

If similar fractionation processes are operating for lead, this would mean that only a small fraction of the lead is the result of decay from the parent uranium, implying that the U-Pb radiometric dates are much, much too old. Cortini, in an article appearing in the Journal of Volcanology and Geothermal Research also suggests this possibility. By analogy with the behaviour of Ra, Th and U it can be suggested that Pb, owing to its large mobility, was also fed to the magma by fluids.

This can and must be tested. The open-system behaviour of Pb, if true, would have dramatic consequences In fact, U and Th both have isotopes of radium in their decay chains with half lives of a week or two, and 6. Any process that is concentrating one isotope of radium will probably concentrate the others as well and invalidate these dating methods, too.

Radium has a low melting point degrees K which may account for its concentration at the top of magma chambers. What radiometric dating needs to do to show its reliability is to demonstrate that no such fractionation could take place. Can this be done? With so many unknowns I don't think so. How Uranium and Thorium are preferentially incorporated in various minerals I now give evidences that uranium and thorium are incorporated into some minerals more than others.

This is not necessarily a problem for radiometric dating, because it can be taken into account. But as we saw above, processes that take place within magma chambers involving crystallization could result in a different concentration of uranium and thorium at the top of a magma chamber than at the bottom.

This can happen because different minerals incorporate different amounts of uranium and thorium, and these different minerals also have different melting points and different densities. If minerals that crystallize at the top of a magma chamber and fall, tend to incorporate a lot of uranium, this will tend to deplete uranium at the top of the magma chamber, and make the magma there look older.

Concerning the distribution of parent and daughter isotopes in various substances, there are appreciable differences. Faure shows that in granite U is 4. Some process is causing the differences in the ratios of these magmatic rocks.

Depending on their oxidation state, according to Faure, uranium minerals can be very soluble in water while thorium compounds are, generally, very insoluble. These elements also show preferences for the minerals in which they are incorporated, so that they will tend to be "dissolved" in certain mineral "solutions" preferentially to one another.

UCSB Science Line

More U is found in carbonate rocks, while Th has a very strong preference for granites in comparison. I saw a reference that uranium reacts strongly, and is never found pure in nature. So the question is what the melting points of its oxides or salts would be, I suppose. I also saw a statement that uranium is abundant in the crust, but never found in high concentrations. To me this indicates a high melting point for its minerals, as those with a low melting point might be expected to concentrate in the magma remaining after others crystallized out.

Such a high melting point would imply fractionation in the magma. Thorium is close to uranium in the periodic table, so it may have similar properties, and similar remarks may apply to it. It turns out that uranium in magma is typically found in the form of uranium dioxide, with a melting point of degrees centrigrade. This high melting point suggests that uranium would crystallize and fall to the bottom of magma chambers. Geologists are aware of the problem of initial concentration of daughter elements, and attempt to take it into account.

U-Pb dating attempts to get around the lack of information about initial daughter concentrations by the choice of minerals that are dated. For example, zircons are thought to accept little lead but much uranium. Thus geologists assume that the lead in zircons resulted from radioactive decay. But I don't know how they can be sure how much lead zircons accept, and even they admit that zircons accept some lead.

Lead could easily reside in impurities and imperfections in the crystal structure. Also, John Woodmorappe's paper has some examples of anomalies involving zircons. It is known that the crystal structure of zircons does not accept much lead. However, it is unrealistic to expect a pure crystal to form in nature.

Radiometric dating

Perfect crystals are very rare. In reality, I would expect that crystal growth would be blocked locally by various things, possibly particles in the way. Then the surrounding crystal surface would continue to grow and close up the gap, incorporating a tiny amount of magma. I even read something about geologists trying to choose crystals without impurities by visual examination when doing radiometric dating. Thus we can assume that zircons would incorporate some lead in their impurities, potentially invalidating uranium-lead dates obtained from zircons.

Chemical fractionation, as we have seen, calls radiometric dates into question. But this cannot explain the distribution of lead isotopes. There are actually several isotopes of lead that are produced by different parent substances uranium , uranium , and thorium. One would not expect there to be much difference in the concentration of lead isotopes due to fractionation, since isotopes have properties that are very similar.

So one could argue that any variations in Pb ratios would have to result from radioactive decay. However, the composition of lead isotopes between magma chambers could still differ, and lead could be incorporated into lava as it traveled to the surface from surrounding materials. I also recall reading that geologists assume the initial Pb isotope ratios vary from place to place anyway.

Later we will see that mixing of two kinds of magma, with different proportions of lead isotopes, could also lead to differences in concentrations. Mechanism of uranium crystallization and falling through the magma We now consider in more detail the process of fractionation that can cause uranium to be depleted at the top of magma chambers.


  • !
  • 1. Rate of Decay;
  • dating one direction 2!

Uranium and thorium have high melting points and as magma cools, these elements crystallize out of solution and fall to the magma chamber's depths and remelt. This process is known as fractional crystallization.

Accuracy of Fossils and Dating Methods

What this does is deplete the upper parts of the chamber of uranium and thorium, leaving the radiogenic lead. As this material leaves, that which is first out will be high in lead and low in parent isotopes. This will date oldest. Magma escaping later will date younger because it is enriched in U and Th. There will be a concordance or agreement in dates obtained by these seemingly very different dating methods.


  • Radiometric dating - RationalWiki.
  • cruise dating website.
  • ?

This mechanism was suggested by Jon Covey. Tarbuck and Lutgens carefully explain the process of fractional crystallization in The Earth: An Introduction to Physical Geology. They show clear drawings of crystallized minerals falling through the magma and explain that the crystallized minerals do indeed fall through the magma chamber. Further, most minerals of uranium and thorium are denser than other minerals, especially when those minerals are in the liquid phase.

Navigation menu

Crystalline solids tend to be denser than liquids from which they came. But the degree to which they are incorporated in other minerals with high melting points might have a greater influence, since the concentrations of uranium and thorium are so low. Now another issue is simply the atomic weight of uranium and thorium, which is high.


  • More Bad News for Radiometric Dating!
  • dating 4 grown ups;
  • enfj dating guide.
  • .
  • .

Any compound containing them is also likely to be heavy and sink to the bottom relative to others, even in a liquid form. If there is significant convection in the magma, this would be minimized, however. At any rate, there will be some effects of this nature that will produce some kinds of changes in concentration of uranium and thorium relative to lead from the top to the bottom of a magma chamber.

Some of the patterns that are produced may appear to give valid radiometric dates. The latter may be explained away due to various mechanisms.

Let us consider processes that could cause uranium and thorium to be incorporated into minerals with a high melting point. I read that zircons absorb uranium, but not much lead. Thus they are used for U-Pb dating. But many minerals take in a lot of uranium. It is also known that uranium is highly reactive. To me this suggests that it is eager to give up its 2 outer electrons. This would tend to produce compounds with a high dipole moment, with a positive charge on uranium and a negative charge on the other elements. This would in turn tend to produce a high melting point, since the atoms would attract one another electrostatically.

I'm guessing a little bit here. There are a number of uranium compounds with different melting points, and in general it seems that the ones with the highest melting points are more stable. I would suppose that in magma, due to reactions, most of the uranium would end up in the most stable compounds with the highest melting points. These would also tend to have high dipole moments. Now, this would also help the uranium to be incorporated into other minerals.